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implementation of AI, offering insights for organisations seeking to navigate the complex behavioural 
landscape of technological change.
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1.  Introduction

The nexus between artificial intelligence (AI) and tourism has gained recognition 
from scholars in the fields of tourism and hospitality (Suanpang & Pothipassa, 
2024; Tong et al., 2022).The use of AI technologies has been studied in numerous 
fields such as employee behaviour in organisations (Ramachandran et al., 2021) in 
the transport industry (Klumpp & Zijm, 2019), food sector (Ramirez-Asis et al., 
2021) and the financial sector (Königstorfer & Thalmann, 2020). Applications of AI 
in the tourism sector range from personalised recommendations, smart infrastruc-
ture, to predictive analytics, all aimed at enhancing traveller experiences (Aliyah 
et al., 2023). The emergence of these applications is prompting businesses to adopt 
more advanced technological systems, in an effort to offer improved products and 
services while increasing productivity and gaining a competitive advantage (Ve-
luru, 2023).

According to Sarker (2021), AI is employed by numerous sectors to enhance 
business processes, reduce costs, optimise client satisfaction, and extend opera-
tional capacity. Dash et al. (2019) note that the use of AI technologies within the 
business environment is not an overnight phenomenon but rather a progressive 
development, as AI technologies offer significant benefits over the human work-
force. This trend is facilitated by continuous AI improvements and the growing pace 
of integration of AI with service delivery systems within organisations (Gursoy et 
al., 2019; Helo & Hao, 2021). The adoption of AI by businesses and industries has 
the potential to revolutionise the manner in which organisations and societies 
discover, learn, live, communicate, and work (Singh et al., 2023). AI systems have 
been utilised to enhance skills in data collection, marketing, advertising, business 
operations, and personal assistance (Mashapa & Atanga, 2023). As AI technolo-
gies continue to evolve, their adoption will likely expand across various sectors, 
particularly within tourism establishments. According to Kazak et al. (2020), AI 
tools can surpass old search engines and also reduce labour requirements in the 
tourism industry.

This study aims to fill knowledge gaps regarding employees’ behavioural inten-
tions to use AI in order to promoting sustainable tourism practices. Despite the 
growing importance of sustainability in tourism, there is still little research that 
links employee perspectives and the role of AI in enhancing sustainable practices, 
particularly in Southern Africa (Tong et al., 2022; Veluru, 2023). As these regions 
often grapple with insufficient infrastructure development and a limited focus 
on sustainability, there is an urgent need for insights from the workforce directly 
involved in tourism operations. This study therefore tries to address the press-
ing issues of environmental conservation and responsible tourism in areas where 
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these topics are still developing (Mashapa & Dube, 2023; Ngepah et al., 2021). 
By focusing on employee intentions and attitudes towards AI, the authors seek to 
identify potential barriers and motivators that could shape the integration of AI 
in sustainable practices. Such information is vital for policymakers and tourism 
stakeholders looking to foster an environmentally responsible industry. In contrast 
to existing studies, which often examine broader technological impacts on tourism 
or investigate sustainability in isolation, the following study specifically focuses 
on the intersection of employee behaviour and AI implementation in the context 
of sustainable tourism. It aims to provide a nuanced understanding of how local 
employees perceive and adapt to technological advancements that could enhance 
sustainability efforts, thus contributing a fresh perspective to the ongoing discourse 
on sustainable tourism development.

2.  Literature Review

2.1.  The Concept of Artificial Intelligence

AI is an umbrella term that encompasses various technological fields such as 
cognitive computing, deep learning, neural networks, computer vision, natural 
language processing, and machine learning (Kashem et al., 2022; Ruël & Njoku, 
2020). According to Welukar and Bajoria (2021), AI refers to programmes, algo-
rithms, systems, or machines that exhibit intelligence. Machine learning (ML) is 
a subset of AI that employs concepts and resources from other fields, particularly 
programming, to create systems that automatically recognise meaningful patterns 
in data, a subject closely associated with data mining (Christopoulou, 2024). In 
fact, the category of ML covers the vast majority of AI developments and applica-
tions (García-Madurga & Grilló-Méndez, 2023). In the tourism sector, ML can be 
leveraged to generate data that can be used by employees to produce improved 
responses to shifts in market conditions and consumer demands. AI encompasses 
a wide range of technological features and services, including big data, chatbots, 
virtual reality (VR), multi-agent systems, robotic machines, distributed agent sys-
tems, 3D modelling, and virtual personal assistants (Maziriri et al., 2023). The term 
AI can also be used to refer to systems that mimic human cognitive processes, such 
as learning, reasoning, and problem-solving (Rong et al., 2020). In essence, AI is 
a collective term for intelligent machines capable of replicating human intelligence 
to devise problem-solving strategies in complex situations.
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2.2.  Sustainable Tourism

According to Suanpang and Pothipassa (2024), sustainable tourism is frequently 
linked to economic development and job opportunities, which should be con-
sidered not only within the travel sector but also across the multifaceted and far-
reaching tourism value chain. Additionally, Begum et al. (2014) note that the par-
ticipation of all stakeholders is crucial for the sustainability of tourism activities. 
Sustainability in tourism involves operations and capacity-building initiatives that 
promote awareness of environmental issues, conserve and protect the planet, value 
biodiversity, and enhance the overall health and employment of local communities 
by supporting the local economy as well as both humans and nature (Baloch et al., 
2022). In summary, sustainable tourism aims to alleviate poverty by generating 
employment and creating sustainable workplaces.

In addition to its potential for job creation, tourism is anticipated to contribute 
to more balanced regional development by disseminating the benefits of economic 
activity, capital, and resources across sectors through the development of value 
chains, and by assisting in the conservation and sharing of cultural heritage (Rodi-
ris, 2021). The objective of balanced regional development in sustainable tourism 
can be achieved through the utilisation of sustainable development goals (SDGs) 
and stakeholder participation. Sustainable tourism is characterised by efforts to 
reduce poverty, develop rural areas, promote equality, preserve culture, protect the 
planet, mitigate climate change, and support the SDGs (Liu, 2003). The adoption of 
policies promoted by the United Nations World Tourism Organization (UNWTO) 
enables tourism organisations to practise sustainable tourism through job creation, 
the implementation of sound environmental practices, and poverty reduction in 
communities while generating profits.

The tourism industry has the potential to lead the transition toward a new 
green economy (Juvan et al., 2023; Mashapa et al., 2019), thereby fostering greater 
support and policy development for achieving sustainability. From the standpoint 
of balanced and equitable development, sustainable tourism thrives in a green 
economy by prioritizing productivity enhancement, embracing innovative and 
eco-friendly production methods, shifting towards a circular economy, and replac-
ing unsustainable jobs with green employment opportunities (Štreimikienė et al., 
2020). However, the swift growth of the green economy may necessitate additional 
training for personnel, potentially leaving some inexperienced individuals to en-
gage in practices for which they are not adequately prepared (Ram et al., 2019).

This study is closely linked to Sustainable Development Goal (SDG) 8, which 
focuses on decent work and economic growth. This SDG aims to promote sustained, 
inclusive, and sustainable economic growth, along with full and productive em-
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ployment and decent work for all. This is aligned with the findings of a study by 
Parisotto (2015), who emphasises that employees’ behavioural intentions regard-
ing the use of AI in sustainable tourism are closely related to the impact of new 
technologies, such as AI, on employment, efficiency, and the nature of work within 
the tourism sector. This, in turn, can lead to more decent and sustainable job op-
portunities. Furthermore, this study is closely aligned with SDG 12, which focuses 
on responsible consumption and production, especially in the area of tourism, as 
stipulated by Target 12.A: Develop and implement tools to monitor sustainable 
tourism (Arora and Mishra, 2023). In addition, Lakhouit (2025) highlights that AI 
can enhance resource management, improve waste management, and encourage 
sustainable practices among both businesses and tourists. Therefore, the behav-
ioural intentions of employees play a crucial role in the effective implementation 
of these AI-driven sustainable initiatives. By enhancing resource management and 
promoting more sustainable behaviours, AI can significantly influence both busi-
ness operations and tourist activities (Liberato et al., 2024).

Finally, this study is consistent with SDG 17: Partnerships for the Goals, by em-
phasising that the integration of AI in sustainable tourism necessitates collaboration 
among various stakeholders, including businesses, employees, technology provid-
ers, and policymakers. The role that AI can play in fostering such multi-stakeholder 
partnerships is discussed by Bang‐Ning et al. (2025).

3.  Theoretical Underpinning and Hypothesis Development

The Unified Theory of Acceptance and Use of Technology (UTAUT) and the Dif-
fusion of Innovation Theory (DIT) serve as the theoretical foundations for this 
study. Venkatesh et al. (2003) developed the UTAUT as a cohesive framework that 
integrates different perspectives on product and consumer acceptability (Williams 
et al., 2015). The UTAUT concept has proven effective (Dwivedi et al., 2017) in 
explaining how individuals adopt new technologies by emphasising the continu-
ous search for new technologies that could be used by different organisations to 
enhance their goods and services.

The degree to which employees of tourism organisations are willing to adopt 
AI tools depends on geographic locations and cultural norms, particularly in con-
glomerate businesses. In fact, the acceptance of technology is one of the most 
crucial concerns when it comes to modifying employees’ attitudes (Lambert et al., 
2023; Zahidi et al., 2024). The new AI technologies are already reshaping organi-
sations and bringing about changes in employees’ behaviour, which is why this 
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study also draws insights from the DIT. As noted by Turan (2019), the DIT seeks 
to characterise acceptance patterns and explain the structure of innovation use in 
order to predict how individuals choose which innovations to adopt (Dwivedi et 
al., 2017). According to the DIT model, the use of AI by employees in sustainable 
tourism businesses depends strongly on societal influence.

The acceptance of AI technology by tourist establishments depends on whether 
their employees perceive it as efficient, particularly when it comes to performance 
expectancy. DeLone and McLean (2003) define performance expectancy as the 
confidence an employee has that using a particular technology will enhance their 
capacity to perform tasks. This confidence plays a crucial role in determining 
whether employees will embrace AI as a valuable tool in their work processes. 
When employees believe that AI can significantly boost their performance, they 
are more inclined to integrate these technologies into their daily routines. This is 
supported by Schukat and Heise (2021), who claim that users’ performance expec-
tations are the foremost factors in evaluating their intention to use new technolo-
gies. In the tourism sector, where customer experience and service efficiency are 
paramount, the perceived advantages of AI can transform an employee’s approach 
to their job, leading to improved service delivery and operational efficiency. Fur-
thermore, organisations must recognise that the perceived benefits of AI are not 
just theoretical; they are central to gaining employee buy-in. If workers can see 
tangible benefits such as increased productivity, enhanced customer interactions, 
and a decrease in mundane tasks, they are considerably more likely to accept and 
effectively use AI tools. Conversely, if employees lack confidence in the technology’s 
ability to enhance their performance, resistance and hesitation towards AI adoption 
will likely ensue, hindering potential innovations within the organisation. To cul-
tivate an environment where AI is welcomed, it is critical for leadership to actively 
engage with employees. By addressing concerns and providing clear examples of 
how AI can foster improved performance, organisations can nurture a positive at-
titude toward technology adoption. Thus, it follows that employees’ expectations 
regarding the performance of AI technologies significantly affect their acceptance 
and utilisation of these tools. In view of the above, the following hypothesis was 
formulated:

H1:  Performance expectancy has a positive effect on employees’ behavioural 
intentions.

The successful integration of AI systems in the workplace also depends on effort 
expectancy. As Choi (2021) points out, the ease with which employees can utilise 
technology is paramount. User-friendly design encourages widespread adoption, 
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whereas complex systems can lead to reluctance or even outright rejection. This 
observation is particularly crucial in industries like tourism, where the efficiency 
and effectiveness of AI tools can significantly impact operations and service deliv-
ery. The argument for prioritising effort expectancy is further supported by Turan 
(2019), who notes that employees are more inclined to embrace technological sys-
tems that enhance their work performance. This suggests that when AI systems are 
designed with usability in mind, they are more likely to be accepted and utilised 
effectively. In contrast, if an AI system fails to consider the skills and capabilities 
of its users, it may become an obstacle rather than a facilitator of productivity. 
Moreover, the potential for AI to become a complex and inflexible tool in the hands 
of employees cannot be overlooked. If such systems are not implemented with an 
understanding of users’ needs and the context in which they operate, they could 
hinder rather than enhance workers’ abilities to perform their tasks. This inflex-
ibility not only stifles innovation but also breeds frustration among employees, 
leading to a decline in morale and overall work performance. Therefore, it is im-
perative to recognise that effort expectancy is not merely a theoretical concept but 
a crucial factor in the practical acceptance of AI in the workplace. An emphasis on 
user-friendly design is essential for fostering a culture of acceptance and maximis-
ing the potential benefits of AI technologies. Given these considerations, another 
hypothesis was proposed:

H2:  Effort expectancy has a positive effect on employees’ behavioural inten-
tions.

The concept of social influence plays a key role in the acceptance of new tech-
nological systems in the model developed by Venkatesh et al. (2003). They argue 
that the degree to which individuals perceive guidance from significant others 
greatly affects their likelihood of embracing innovation. While this perspective is 
valuable, it raises an important question: should individuals be so heavily swayed 
by their social networks when deciding to adopt new technologies?

Further support for the power of social influence can be found in a study by 
Vannoy and Palvia (2010), who explore how a person’s social network significantly 
shapes their acceptance of technology. However, one could argue that this reliance 
on peer pressure may inhibit personal judgment. When a technology is adopted 
solely because of social dynamics, it may not align with an individual’s genuine 
needs or preferences. Thus, it is crucial to critically assess whether conformity is 
truly advantageous for individual growth or merely a symptom of social dynam-
ics. Talukder’s (2012) definition highlights the tendency of individuals to adopt an 
innovation to conform; yet this conformity often implies a loss of individuality in 
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decision-making. When people feel compelled to follow influential figures within 
their networks, is it possible that they are sacrificing their unique perspectives for 
the sake of acceptance? The fear of being left behind or not fitting in can suppress 
innovative thinking and personal agency. Alblooshi and Hamid (2021) argue that 
mandatory use can intensify social influence, especially in contexts where knowl-
edge about the technology is limited and rewards or penalties are in place. The 
risks of coercive adoption could lead to dissatisfaction and disengagement in the 
long run. Ultimately, while social influence undeniably shapes the technological 
landscape, it is critical to recognise its dual nature. While it can serve as a catalyst 
for acceptance, it may also undermine personal judgment and foster a culture of 
conformity. Therefore, individuals and organisations must strive to balance social 
influence with personal autonomy in their approach to adopting new technologies. 
Acknowledging this balance is essential to fostering an innovative environment 
that empowers individuals rather than stifling their creative potential. The above 
considerations are the basis for the following hypothesis:

H3:  Social influence has a positive effect on the behavioural intentions of em-
ployees.

The role of facilitating conditions in shaping employees’ adoption of AI is an 
understudied yet crucial aspect of organisational dynamics. It is well-documented 
that when individuals perceive the existence of an organisational and technological 
framework conducive to the use of AI, they are more willing to use it (Venkatesh et 
al., 2003). However, the observation that facilitating conditions impact use behav-
iour more significantly among older employees, particularly those with extensive 
experience, raises important considerations about age and adaptability in the work-
place (Venkatesh et al., 2003). This demographic could be particularly resistant to 
change, and their behaviour may be more strongly influenced by the perceived 
support systems provided by their organisation. Conversely, it is concerning that 
these enabling conditions do not seem to affect employees’ behavioural intention. 
This dissonance highlights a potential gap in how organisations communicate and 
promote AI adoption. If employees recognise the support systems available but do 
not feel inclined to integrate the technology into their daily tasks, there is a critical 
need for organisations to address the cultural and motivational aspects surround-
ing AI. Furthermore, the assertion that enabling conditions can predict use behav-
iour but not intent (Talukder, 2012) raises significant questions about the nature 
of employee engagement with AI technologies. This suggests that organisations 
may place too much focus on establishing technological infrastructure without 
adequately fostering an environment that encourages intentional adoption. It is not 
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enough to create enabling conditions; there must also be an effort to cultivate a cul-
ture of innovation and openness that genuinely engages employees and prompts 
them to adopt AI actively. In light of the above, organisations must not only ensure 
that facilitating conditions are in place but should strive to create a holistic envi-
ronment that motivates and inspires employees to embrace AI, thus maximising 
the potential benefits of technological advancements. Without such efforts, even 
the most robust enabling conditions may fall short in achieving widespread and 
effective AI adoption. In view of the above, the following hypothesis was proposed:

H4:  Facilitating conditions have a positive effect on employees’ behavioural 
intentions.

The concept of relative advantage is a critical component of the Diffusion of 
Innovations Theory (DIT), as emphasised by Frick et al. (2021). Relative advantage 
refers to the degree to which an invention is perceived to outperform the existing 
technology it aims to replace, especially in terms of cost, efficiency, or reputation 
(Cao et al., 2021). This perspective is vital because it underscores the necessity for 
new technologies to demonstrate tangible benefits over their predecessors. It is 
essential to note that merely introducing a new technology is not sufficient for its 
adoption. Employees are significantly influenced by their perceptions of a technol-
ogy’s efficacy and value. When individuals recognise the advantages of a new tool, 
specifically its ability to enhance their work processes compared to systems used so 
far, they are more inclined to embrace it. This alignment between perceived useful-
ness and efficiency is crucial, as it directly impacts people’s willingness to adopt 
new technologies (Scott et al., 2008). In short, the concept of relative advantage is 
not just relevant theoretically but is also a practical guide for organisations seeking 
to implement new technological tools. If businesses can effectively communicate 
and demonstrate the superiority of new innovations, they are likely to foster a more 
receptive attitude among employees, ultimately leading to successful technology 
adoption. Thus, the following hypothesis was proposed:

H5:  Relative advantage has a positive effect on employees’ behavioural inten-
tions.

The compatibility of technology with user needs, values, and experiences is 
a critical factor in determining its acceptance and success. As Scott et al. (2008) 
note, technology that aligns with the expectations and backgrounds of potential us-
ers is more likely to gain acceptance. This principle is especially relevant in discus-
sions around emerging technologies, such as artificial intelligence and autonomous 
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vehicles. Lutfi et al. (2022) argue that compatibility is not merely about functional 
alignment; it includes a broader set of values and ideals. Employees are more in-
clined to adopt AI systems if these tools resonate with their own values and past 
experiences. If a technological tool appears incompatible, it can lead to frustration 
and resistance, as individuals may perceive it as undermining their established ways 
of working. Chen et al. (2021) examine this notion in the context of autonomous 
vehicles. They found that individuals who thought these vehicles would seam-
lessly integrate into existing transportation systems were more inclined to support 
their implementation. This underscores the importance of perceived compatibility, 
which can influence public opinion and acceptance of new technologies. However, 
one cannot overlook the risk of resistance when technologies fail to connect with 
users’ values and experiences. The challenge lies in ensuring that new innovations 
are designed with user compatibility in mind. This means understanding the intri-
cacies of user backgrounds and their experiences with similar technologies, which 
ultimately affects their perception of a technology’s usefulness and ease of use. 
Therefore, the greater the compatibility of a technology with users’ values, desires, 
and experiences, the higher the likelihood of its acceptance and successful integra-
tion into everyday use. This highlights the need for developers and policymakers 
to prioritise user-centred design in technological advancements to foster a more 
inclusive and effective technological landscape. In view of the above, the following 
hypothesis was formulated:

H6:  Compatibility has a positive effect on employees’ behavioural intentions.

In the context of technological implementation, complexity is often compared 
to perceived usability, which describes a system that is easy to learn and requires 
minimal effort from employees (Turan, 2019). For AI to be adopted successfully, 
users must learn about, understand, and become aware of how it functions and 
advantages it offers. As a result, users will prefer AI systems that are less labour-in-
tensive and easier to understand and use. Lambert et al. (2023) describe complexity 
as the difficulty of comprehending and utilising new innovations. The complexity 
of AI reflects employees’ or organisations’ perceptions of its accessibility and ease of 
use, indicating whether the technology is user-friendly. Furthermore, the complex-
ity of the technology can lead to misunderstandings regarding its intended purpose 
(Morandini et al., 2023). Similarly, the implementation of complex AI systems can 
negatively affect employees’ willingness to use AI in sustainable tourism (Freitas et 
al., 2023). These considerations led to the formulation of the following hypothesis:

H7:  Complexity has a negative effect on employees’ behavioural intentions.
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Figure 1. Proposed model
Source: Authors

Trialability is another factor that plays a crucial role in the successful adoption 
of innovations like AI within the tourism industry. Defined as the ability to test 
a technology without significant risk or cost, trialability allows gradual implemen-
tation, which can foster positive outcomes (Talukder, 2018). Wolske et al. (2017) 
highlight that assessing AI before its widespread use is essential; if employees find 
AI difficult to use or irrelevant, their perceptions can turn negative. Thus, provid-
ing employees with the opportunity to trial AI enhances their understanding and 
confidence in the technology, leading to increased productivity and better service. 
The positive impact of trialability becomes especially important in overcoming 
resistance to new technologies, as it helps build a culture of innovation and adapt-
ability. As a result, trialability is vital for tourism businesses to ensure the suc-
cessful integration of AI. By allowing employees to test and adapt to AI solutions, 
organisations can address concerns and enhance acceptance, ultimately leading to 
improved operational outcomes. Thus, the following hypothesis was developed:

H8:  Trialability has a positive influence on employees’ behavioural intentions.
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Behavioural intention serves as a crucial predictor of individual actions, en-
capsulating not just the likelihood of engaging in a specific behaviour but also the 
underlying motivations driving that choice (Ajzen, 1991). This concept is particu-
larly relevant in technology adoption research, where understanding these inten-
tions can lead to more effective interventions. If we acknowledge the impact of 
behavioural intentions on actual behaviour, it becomes essential to examine and 
measure these intentions to facilitate positive changes and encourage technology 
use. Therefore, the following hypothesis was put forward:

H9:  Behavioural intentions have a positive effect on use behaviour.

Figure 1 shows relationships between the above hypotheses.

4.  Material and Methods

4.1.  Instrument Development and Data Collection

The following study employed a quantitative research design grounded in positiv-
ism and a deductive approach. An online questionnaire was used to collect data 
from a self-selected sample of 353 employees of tourism organisations operating in 
South Africa’s Gauteng province, which have implemented AI systems. The ques-
tionnaire consisted of existing validated measurement scales for key constructs, 
such as performance expectancy, effort expectancy, social influence, facilitating 
conditions, relative advantage, compatibility, complexity, and trialability, which 
were derived from the literature (Alblooshi & Hamid, 2021; Cao et al., 2021; Chat-
terjee et al., 2021; Frick et al. 2021; Bajunaied et al., 2023; Gursoy et al., 2019; 
Dwivedi et al., 2017; Cheung & Vogel, 2013). Of the 400 questionnaires received, 
only 353 were deemed suitable for further analysis following data screening. Partial 
least squares structural equation modelling (PLS-SEM) techniques were applied to 
analyse the data to investigate the potential relationships between variable out-
comes and use behaviour. The validity and reliability of the measurement models 
were assessed, and the fit and significance of the paths in the structural model 
were evaluated.
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4.2.  Statistical Methods

The study examined the proposed relationships between the constructs using 
partial least squares structural equation modelling (PLS-SEM). PLS-SEM is a useful 
technique for evaluating large data sets since models typically become more com-
plicated as the number of observations increases (Ringle et al., 2014). Additionally, 
exploratory research and theory development are two areas where PLS-SEM excels 
(Hair et al., 2017). Because PLS-SEM maximises explained variance and possesses 
greater statistical power in parameter estimates, it was chosen over covariance-
based SEM (Tajvidi et al., 2018). The study by Diamantopoulos and Winklhofer 
(2001) employed a reflective measurement model, where it is assumed that changes 
in latent variables are reflected in changes in their indicators, so modelled relation-
ships run from latent variables or constructs to indicators or observed variables.

4.3.  Respondents’ Profiles

In terms of age, 204 respondents (57.8%) were aged 18–30, 84 (23.8%) — aged 
31–40, 44 (12.4%) — aged 41–50, and 21 (6%) — aged 51 and older. 153 (43.2%) 
identified themselves as women, 139 (39.2%) as male, while 35 (10.2%) preferred 
not to disclose their sex. As regards the level of education, 159 (45%) respondents 
had completed high school, 84 (23.8%) had a bachelor’s degree, while 29 (8.2%) 
held a master’s degree. Respondents were also asked to provide information about 
their experience of using AI tools. 119 (33.7%) reported having one year of ex-
perience, while 43 (12.2%) said they had over five years of experience. The final 
question in this section was about the type of AI tool they had used. 145 (41.1%) 
mentioned chatbots, while 79 (22.4%) indicated seamless booking systems.

5.  Results

5.1.  Validity and Reliability of the Constructs

To confirm the validity and reliability of the construct measures in Table 3, the 
measurement model was assessed prior to examining the structural model in Fig-
ure 2. Composite reliability (CR) was utilised to evaluate the dependability of the 
reflective constructs; values exceeding 0.7 indicated adequate reliability (Nunkoo 
& Ramkissoon, 2012).
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Fig 2. The structural model
Source: Authors

Composite reliability and average variance extracted (AVE) were employed to 
evaluate the outer model’s internal consistency and convergent validity, respec-
tively. As composite reliability accounts for the various outer loadings of the indi-
cator variables, it serves as a useful metric for assessing internal consistency reli-
ability (McCrae & Costa, 1989). In relation to the extent of variance caused by the 
measurement error, the AVE indicates the average amount of variance that a latent 
construct captures from its indicators (Fornell & Larcker, 1981). In other words, it 
measures the extent to which the indicators represent the latent construct they are 
intended to assess. According to the general rule, a latent construct is deemed to 
have sufficient convergent validity if it explains at least 50% of the variance of its 
indicators given a threshold of 0.5. Cronbach’s alpha assumes that each indicator 
is equally reliable (Ringle et al., 2014). All items demonstrated convergent valid-
ity, with over 50% of each item’s variance shared with its corresponding construct, 
thereby indicating that all questionnaire items were satisfactory and reliable. Fur-
thermore, all individual item loadings exceeded the recommended value of 0.7. 
The lowest AVE value of 0.711 is also above the recommended threshold of 0.4, 
and the lowest composite reliability value of 0.828 is significantly higher than the 
recommended value of 0.6. These findings generally indicated that the research 
instrument exhibited acceptable levels of reliability.
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Table 1. Measurement accuracy assessment

Factors and items Factor
Loading

Composite
Reliability

Average 
Variance 

Extracted
(AVE)

Cronbach 
Alpha

Variance 
Inflation 

Factor
(VIF)

Standard
Deviations

(STD)

Performance expectancy 0.878 0.814 0.814

PE1: I believe AI would be 
useful in my daily work. 0.838 1.896 0.874

PE2: My interaction with the AI would 
be clear and understandable. 0.737 1.436 0.798

PE3: I trust AI as a critical tool for my work. 0.792 1.659 0.915

PE4: I utilise AI because it 
improves work productivity. 0.839 1.991 0.878

Effort expectancy 0.887 0.783 0.831

EE1: I find AI technologies 
relatively easy to use. 0.786 1.635 0.906

EE2: Understanding and learning to 
use AI would be simple for me. 0.823 1.848 0.874

EE3: AI is user-friendly. 0.813 1.813 0.915

EE4: I like AI because it makes my job easier. 0.836 2.001 0.878

Social influence 0.828 0.785 0.702

SI1: People around me (co-workers, 
family/ friends) believe I should use AI. 0.768 1.407 0.878

SI2: I intend to share and encourage 
co-workers to use AI technologies. 0.852 1.316 0.847

SI3: I employ AI as a result of my 
colleagues’ assistance. 0.733 1.395 0.889

Facilitating conditions 0.941 0.841 0.903

FC1: I have the resources 
required to employ AI. 0.835 1.677 0.874

FC2: My organisation has established 
support systems for AI learning. 0.956 1.369 0.878

FC3: My experience allows me to effortlessly 
grasp and apply AI technologies. 0.956 1.369 0.878

Relative advantage 0.863 0.711 0.762

RA1: I believe that AI would be more efficient 
and advanced than my current technology. 0.856 1.711 0.878

RA2: I am willing to try new AI 
technologies despite the cost. 0.853 1.656 0.848

RA3:AI should be costly due to its 
intelligence and data quality. 0.757 1.395 0.896

Compatibility 0.852 0.743 0.743

CO1: AI is reliable for offering 
consistent products and services. 0.843 1.574 0.920

CO2: Using AI is influenced by my values. 0.874 1.734 0.847

CO3: I utilise AI because it meets my needs, 
wants, and experiences in the workplace. 0.71 1.338 0.906

Complexity 0.928 0.812 0.880

CM1: I am comfortable and 
confident using the AI systems. 0.954 1.561 0.906
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Factors and items Factor
Loading

Composite
Reliability

Average 
Variance 

Extracted
(AVE)

Cronbach 
Alpha

Variance 
Inflation 

Factor
(VIF)

Standard
Deviations

(STD)

CM2: The use of AI helps me to 
integrate important information. 0.785 1.465 0.915

CM3: I received training to 
understand AI systems. 0.954 1.561 0.906

Trialability 0.856 0.766 0.779

TR1: I am the first to test out 
new AI tools at work. 0.704 1.456 0.995

TR2: I am more likely to employ AI after it has 
been tested by the organisation and others. 0.845 1.615 0.885

TR3: I want to be allowed to employ AI 
on a trial basis to see what it can do. 0.712 1.556 0.896

TR4: The use of AI tools is time-
consuming but brings positive results. 0.827 1.909 0.906

Use behaviour 0.858 0.753 0.751

BU1:AI helps me keep up with my work. 0.831 1.597 0.920

BU2: Regular use of AI enables me 
to deliver superior service. 0.845 1.716 0.876

BU3: Using AI allows me to avoid 
mistakes and not neglect job tasks. 0.775 1.365 0.885

Behavioural intention 0.850 0.750 0.770

BI1: The use of AI is a good idea. 0.722 1.512 0.995

BI2:AI-supported decision-making has had 
a positive impact on my career growth. 0.809 1.587 0.885

BI3: Using AI increases my chances 
of making significant decisions. 0.76 1.614 0.906

BI4I : Plan to use AI frequently. 0.772 1.341 0.920

Source: Authors

According to Ringle et al. (2014), discriminant validity refers to the extent to 
which a latent construct differs from other latent constructs in a given study. The 
Fornell-Larcker criterion is the most commonly employed method for assessing 
discriminant validity. The value of AVE for each construct must exceed its shared 
variance (Fornell & Larcker, 1981).

The outcomes of the Fornell-Larcker criterion are presented in Table 2. As can 
be seen, the results for discriminant analysis in the table indicate that the square 
root of every component AVE is bigger beyond its association to a different compo-
nent. As stated by Hanafiah (2020), every construct’s average variation should be 
greater than its squared correlation between all other constructs. Table 2 displays 
the diagonal values in bold; the figures reveal that the highest square root of the 
AVEs is 0.917, while the lowest is 0.862.
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Table 2. Discriminant validity according to the Fornell-Larcker criterion

BI BU CM CO EE FC PE RA SI TR

(BI) 0.866

(BU) 0.706 0.868

(CM) 0.587 0.432 0.901

(CO) 0.675 0.639 0.534 0.862

(EE) 0.599 0.512 0.684 0.539 0.885

(FC) 0.475 0.442 0.537 0.514 0.610 0.917

(PE) 0.546 0.510 0.553 0.582 0.649 0.618 0.902

(RA) 0.504 0.467 0.518 0.548 0.559 0.554 0.574 0.873

(SI) 0.559 0.643 0.500 0.556 0.619 0.545 0.559 0.552 0.886

(TR) 0.622 0.571 0.650 0.635 0.624 0.476 0.552 0.572 0.615 0.875

Source: Authors

5.2.  Model Evaluation

To identify common method bias in PLS-SEM, researchers utilise a full collinear-
ity assessment method. To evaluate collinearity, they examine values of Variance 
Inflation Factor (VIF). According to Diamantopoulos and Siguaw (2006), VIF val-
ues exceeding 3.3 suggest the presence of common method bias (CMB), whereas 
values below this threshold indicate its absence. The same authors calculated VIF 
values in accordance with established social science practices rather than directly 
reporting collinearity issues. The results of the collinearity assessment using VIF 
values are shown in Table 1. As can be seen, VIF values for all constructs are below 
3.3, which indicates the absence of CMB in the study. Furthermore, goodness-of-
fit was assessed using the Standardised Root Mean Square Residual (SRMR), which 
is calculated as the square root of the mean of the squared standardized residuals 
between the observed and predicted covariance matrices (Chen, 2007). An SRMR 
value of less than 0.08 indicates a good model fit, so the result of 0.07 obtained in 
the study indicates an adequate fit. The Normed Fit Index (NFI), which compares 
the chi-square values of the proposed model and the null model was also 0.87, 
which meets the suggested NFI thresholds (Hu & Bentler, 1999). The adequacy of 
the model is further substantiated by these findings.

Another element of the model evaluation involved examining coefficients of 
determination (R²) of the endogenous constructs. According to Schumacher et 
al. (2016), the R² value represents the percentage of variance in a variable that 
can be explained by the independent variables. Hair et al. (2019) suggest that R² 
values of 0.75, 0.5, and 0.25 can be considered significant, moderate, and weak, 
respectively. R² values were calculated for two constructs analysed in the study: 
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behavioural intention and use behaviour.. The R² values for these constructs were 
0.584 and 0.419, respectively. These values indicate that the model has moderate 
to significant explanatory power (Hair et al., 2019). In addition to R² as a predic-
tion criterion, Hair et al. (2017) recommend examining Q² to assess the predictive 
relevance of the structural model. The predictive applicability of constructs should 
be positive and have values greater than zero (Hair et al., 2019). Q² values of 0.02 
represent small predictive relevance, 0.15 — medium and over 0.35 — large. In 
this study, the value of Q² for use behaviour was 0.448 and for behavioural inten-
tion — 0.335, indicating that the path model has sufficient predictive relevance for 
the endogenous constructs.

5.3.  Hypothesis Verification and Discussion

It was found that performance expectancy has a major has a positive effect on em-
ployees’ behavioural intentions (β = 0.179, p < 0.05), which means that H1 can be 
accepted (see Table 3). This finding is consistent with the study by Cao et al. (2021), 
who note that performance expectancy has repeatedly been involved in multiple 
paradigms for integrating IT, which has been supported by empirical evidence 
from different studies conducted in various settings. Furthermore, Chatterjee et 
al. (2021) found a positive effect of performance expectancy on workers’ attitudes 
towards the use of AI in customer relationship management (CRM) systems.

It was also found that effort expectancy a positive and significant effect on em-
ployees’ behavioural intention of adopting AI technologies (β = 0.469, p < 0.05), 
which means that H2 is supported. This finding is consistent with a study by Cao 
et al. (2021), in which effort expectancy was found to have a positive effect on 
respondents’ behavioural intention to employ AI for organisational purposes. Posi-
tive correlations between these two factors were also reported by Chatterjee et al. 
(2021).

As for the effect of social influence, a statistically significant correlation with 
behavioural intentions was detected (β = 0.102, p < 0.05), which means that H3 
can be accepted. A similar finding was reported by Al-Sharafi et al. (2023), who 
found that favourable opinions from friends, family, co-workers, and peer groups 
increase Generation Z’s willingness to use AI products in daily and work tasks. 
Furthermore, a study by Yin et al. (2023) report that organisational characteristics 
such as organisational AI readiness positively affect employees’ attitudes towards 
AI assistants.

As can be seen in Table 3, a positive and significant effect on employees’ use be-
haviour was also found in the case of facilitating conditions (β = −0.356, p < 0.05), 
which means that H4 can be accepted. Facilitating conditions refers to the degree 
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to which an individual trusts that an organisational and mechanical infrastructure 
exists to support use of the system. The significance of facilitating conditions as 
a predictor of behavioural intentions was reported by Hmoud and Várallyai (2020), 
who studied attitudes of HR professionals towards the use of an AI-based Human 
Resources Information System (HRIS). Similarly, the study by Al-Sharafi et al. (2023) 
indicates that individuals are more likely to use AI products more sustainably when 
they possess the information and tools they require to do so. The same study sug-
gests that to motivate individuals to use services that align with their lifestyles, it 
is essential to offer them the support, resources, and skills that they need to do so.

On the other hand, no statistically significant association was found between 
relative advantage and behavioural intentions (β = −0.019, p > 0.05), which means 
that H5 has to be rejected. This stands in contrast to the study by Moodley & Sookh-
deo (2025), who found relative advantage to be positively associated with behav-
ioural intentions regarding AI. Similarly, Hanji et al. (2023) reported a strong effect 
of relative advantage on employees’ behavioural intentions to use chatbots in the 
tourism industry. A possible reason for the lack of such an effect in our study could 
be that some respondents in the sample were accustomed to using older systems 
and were satisfied with them; as a result, they did not consider AI technologies to 
be superior to older systems.

Moreover, compatibility was found to have a positive and significant effect on 
employees’ use of AI. Therefore, H6 (β = 0.821, p < 0.001) can be accepted. Accord-
ing to Hmoud and Várallyai (2020), compatibility is a crucial predictor of adoption 
behaviour when it comes to innovations in the field of information technology (IT). 
Our study confirms results of the study by Cheung and Vogel (2013), who found 
that compatibility had a favourable effect on the use and acceptance of collabora-
tive technology.

The study also revealed that complexity has a considerably positive effect on 
employees’ use behaviour regarding AI in tourism organisations. Thus, H7 can be 
accepted (β = 0.738, p < 0.001). According to Tseng (2025), complexity is a chal-
lenge when it comes to using a particular technology. Previous studies suggest that 
the degree of complexity negatively affects technology acceptance. In other words, 
complexity determines the degree to which organisations believe AI recruitment 
tools are challenging to utilise.

As posited in H8, trialability was found to positively and significantly associated 
with behavioural intentions (β = 0.456, p < 0.05). A similar positive effect was report-
ed by Alateeg et al. (2024), who also found that attitudes of respondents who were 
previously favourably disposed to AI were reinforced by improving its trialability.

Finally, a significant association (β = 0.906, p < 0.001) was found to exist be-
tween use behaviour and behavioural intention to adopt AI tools among employees 
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(H9). A similar study by Or (2023), show that user acceptance of technology is 
critical to the effective implementation of technology. Furthermore, attitude is 
significant when added to the UTAUT model and is a good predictor of intent.  
Models often conclude that the use of technology is determined by behavioural 
goals, resulting in how users feel (Hooda et al., 2022).

Table 3. Evaluation of the structural model

Hypothesis t-statistic p-value Path coefficient Hypothesis status

H1 PE → UB 3.460 0.001 0.179 Accepted

H2 EE → UB 3.145 0.002 0.469 Accepted

H3 SI → UB 3.039 0.002 0.102 Accepted

H4 FC → UB 4.499 0.000 0.356 Accepted

H5 RA → UB 0.620 0.536 0.019 Rejected

H6 CO → UB 23.086 0.000 0.821 Accepted

H7 CM → UB 8.944 0.000 0.738 Accepted

H8 TR → UB 17.682 0.000 0.456 Accepted

H9 UB → BI 104.241 0.000 0.906 Accepted

Source: Authors

6.  Conclusions

6.1.  Theoretical Implications

The contributions of this study to theory are significant and multifaceted. Firstly, 
by invoking the unified theory of acceptance and use of technology (UTAUT) the 
study creates a more robust framework for understanding technology adoption. 
This inclusion of UTAUT enables a comprehensive examination of how various 
factors, such as performance expectancy, effort expectancy, and social influence, 
interact with the characteristics of innovations and adopters. Secondly, the study 
offers new theoretical insights by highlighting the importance of user intentions 
and behaviours, particularly when considering moderating factors like sex, age, 
and experience. By focusing on these moderating variables, the study deepens 
our understanding of the nuanced ways in which different demographic groups 
approach technology adoption. Finally, by combining the DIT, TAM and UTAUT, 
the study emphasizes the need for a multidimensional approach to technology 
adoption. Overall, the study contributes to the ongoing discourse in technology 
adoption theory, paving the way for further research and application in this evolv-
ing field.
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6.2.  Practical Implications

This study offers actionable insights regarding ways of implementing technology 
in the tourism industry, emphasizing practical steps for improvements in this area. 
Managers should focus on factors like performance expectations and usability to 
foster a supportive environment for adoption. Technology enhances customer ex-
periences and streamlines operations; for instance, travel agencies can use CRM 
systems to better understand client preferences. User-friendly systems that align 
with staff experiences boost adoption rates, while staff training can increase confi-
dence in using technology. Mobile applications are vital, providing travellers with 
real-time information, but managing app complexity through intuitive design is 
essential. Feedback mechanisms enable ongoing improvement and user satisfac-
tion. Infrastructure also plays a key role; strong internet connectivity in tourist 
hotspots encourages the use of digital solutions. Strategies should cater to different 
traveller demographics, offering traditional methods for older tourists alongside 
tech-savvy options for younger ones. Promoting trialability through pilot programs 
allows stakeholders to experience new technologies with minimal risk, while data 
analytics can refine marketing strategies. Collaborating with tech firms on security 
and privacy increases trust in adopting new solutions. Effective communication 
through webinars and social media is critical to keep stakeholders informed. By 
addressing these factors and tailoring approaches for diverse users, organizations 
can significantly boost technology adoption, leading to enhanced operational ef-
ficiency, customer satisfaction, and a competitive edge in the tourism industry.

6.3.  Limitations and Directions for Future Research

This study relied on data collected via an online questionnaire, which tend to be 
associated with self-selection bias, which means that respondents who choose to 
participate differ systematically from those who do not. Another limitation was 
the sole reliance on quantitative data in the form of Likert items, which constrain 
respondents’ potential inputs. The inclusion of qualitative data from face-to-face 
interviews, focus groups, or observations would enable participants to provide 
more nuanced responses regarding the use of AI in tourism organisations.

The study focused exclusively on employees from tourism companies that ac-
tually employ AI-powered technology, which means that potentially significant 
perspectives from tourism organisations that have yet to adopt AI technologies 
were omitted.

Although the sample included respondents aged from 18 to 60, over half of 
them were between 18 to 30 years old. This demographic skew may have biased the 
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results by giving more weight to the views and attitudes of the younger generation 
and underrepresenting those of older respondents.

In the light of the growing popularity of AI solutions worldwide, it is imperative 
for tourism organisations to enhance their understanding of employee attitudes 
to undertake necessary measures. Future research could focus on tourists who 
actively engage with and choose tourism offerings and products with a view to 
helping organisations comprehend tourists’ perceptions of AI, as well as providing 
valuable insights for marketing departments.
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Intencje behawioralne pracowników dotyczące wykorzystania 
sztucznej inteligencji w zrównoważonej turystyce

Streszczenie. Celem badania była ocena wpływu ośmiu czynników kształtujących intencje beha-
wioralne pracowników branży turystycznej dotyczące wykorzystania systemów sztucznej inteligencji 
w ich środowisku pracy. Badane czynniki obejmowały oczekiwaną wydajność i wysiłek wymagany 
podczas korzystania z nowych narzędzi, sprzyjające warunki, względną przewagę w stosunku do 
innych rozwiązań, zgodność z potrzebami użytkowników, złożoność i możliwość wypróbowania 
nowych narzędzi. Czynniki te zostały wykorzystane jako predyktory intencji behawioralnych i zacho-
wań użytkowych. Dane dotyczące pracowników branży turystycznej do analizy PLS-SEM zebrano 
przy pomocy ankiety internetowej. Wyniki wskazują na istnienie dodatniej i statystycznie istotnej 
korelacji między oczekiwaną wydajnością, oczekiwanym wysiłkiem oraz wpływem społecznym z jed-
nej strony, a intencjami behawioralnymi z drugiej. Ponadto stwierdzono, że warunki sprzyjające, 
zgodność z potrzebami użytkowników, złożoność i możliwość wypróbowania były dodatnio i w spo-
sób statystycznie istotny skorelowane z intencjami behawioralnymi, które z kolei były skorelowane 
z wykorzystaniem sztucznej inteligencji przez pracowników. Badanie przyczynia się do lepszego 
zrozumienia, w jaki sposób cechy samych użytkowników wpływają na wdrażanie sztucznej inteli-
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gencji, zapewniając tym samym wskazówki dla organizacji próbujących znaleźć optymalną drogę 
działania uwzględniającą złożone czynniki behawioralne związane ze zmianami technologicznymi.

Słowa kluczowe: sztuczna inteligencja, teoria dyfuzji innowacji, zrównoważona turystyka, ujedno-
licona teoria akceptacji i wykorzystania technologii
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