Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ perceived ease of use (PEOU) and perceived usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75–90. https://doi.org/10.1016/j.chb.2016.05.014
DOI: https://doi.org/10.1016/j.chb.2016.05.014
Aburbeian, A.M., Owda, A.Y., & Owda, M. (2022). A technology acceptance model survey of the metaverse prospects. AI, 3(2), 285–302. https://doi.org/10.3390/ai3020018
DOI: https://doi.org/10.3390/ai3020018
Ahmad, N., & Rasheed, H.M.W. (2024). Tourism and hospitality SMEs and digital marketing: what factors influence their attitude and intention to use from the perspective of BRT, TAM and IRT. Journal of Hospitality and Tourism Insights, 8(4), 1546–1563. https://doi.org/10.1108/JHTI-05-2024-0508
DOI: https://doi.org/10.1108/JHTI-05-2024-0508
Ahmad, S., Zulkurnain, N.N., & Khairushalimi, F.I. (2016). Assessing the validity and reliability of a measurement model in structural equation modeling (SEM). British Journal of Mathematics & Computer Science, 15(3), 1–8. https://doi.org/10.9734/BJMCS/2016/25183
DOI: https://doi.org/10.9734/BJMCS/2016/25183
Ahmed, K.A., Damodharan, V., & Kumaraperumal, S. (2024). Factors affecting mobile coupon acceptance through smartphone app. International Journal of Business Information Systems, 46(1), 140–163. https://doi.org/10.1504/IJBIS.2024.138557
DOI: https://doi.org/10.1504/IJBIS.2024.138557
Ajzen, I. (2020). The theory of planned behavior: frequently asked questions. Human Behavior and Emerging Technologies, 2(4), 314–324. https://doi.org/10.1002/hbe2.195
DOI: https://doi.org/10.1002/hbe2.195
Aleassa, H.M., Ababneh, H.T., Khider, K.H., & Al-Omari, A. (2022). Predicting behavioural intentions using an extended technology acceptance model. International Journal of Knowledge Management Studies, 13(4), 423–444. https://doi.org/10.1504/IJKMS.2022.126153
DOI: https://doi.org/10.1504/IJKMS.2022.126153
Alkawsi, G., Ali, N., & Baashar, Y. (2021). The moderating role of personal innovativeness and users experience in accepting the smart meter technology. Applied Science, 11(8), 1–29. https://doi.org/10.3390/app11083297
DOI: https://doi.org/10.3390/app11083297
Almaiah, M.A., Alfaisal, R., Salloum, S.A., Al-Otaibi, S., Shishakly, R., Lutfi, A., …, Al-Maroof, R.S. (2022). Integrating teachers’ TPACK levels and students’ learning motivation, technology innovativeness, and optimism in an IoT acceptance model. Electronics, 11(19), 1–17. https://doi.org/10.3390/electronics11193197
DOI: https://doi.org/10.3390/electronics11193197
Al-Qaysi, N., Mohamad-Nordin, N., & Al-Emran, M. (2020). Employing the technology acceptance model in social media: A systematic review. Education and Information Technologies, 25(1), 4961–5002. https://doi.org/10.1007/s10639-020-10197-1
DOI: https://doi.org/10.1007/s10639-020-10197-1
Alshammari, S.H., & Babu, E. (2025). The mediating role of satisfaction in the relationship between perceived usefulness, perceived ease of use and students’ behavioural intention to use ChatGPT. Scientific Report, 15, 7169, 1–13. https://doi.org/10.1038/s41598-025-91634-4
DOI: https://doi.org/10.1038/s41598-025-91634-4
Amoroso, D.L., & Lim, R.A. (2015). Exploring the personal innovativeness construct: the roles of ease of use, satisfaction and attitudes. Asia Pacific Journal of Information Systems, 25(4), 662–685. http://dx.doi.org/10.14329/apjis.2015.25.4.662
DOI: https://doi.org/10.14329/apjis.2015.25.4.662
Armenakis, A., Harris, S.G., & Mossholder, K.W. (1993). Creating readiness for organizational change. Human Relations, 46(6), 681–703. https://doi.org/10.1177/001872679304600601
DOI: https://doi.org/10.1177/001872679304600601
Bakı, R., Birgören, B., & Aktepe, A. (2018). A meta analysis of factor affecting perceived usefulness and perceived ease of use in the adoption of e-learning systems. Turkish Online Journal of Distance Education, 19(4), 4–42. https://doi.org/10.17718/tojde.471649
DOI: https://doi.org/10.17718/tojde.471649
Bakırtaş, H., & Akkaş, C. (2017). Technology readiness for new technologies: an empirical study. Uluslararası Sosyal Araştırmalar Dergisi, 10(52), 941–949. http://dx.doi.org/10.17719/jisr.2017.1948
DOI: https://doi.org/10.17719/jisr.2017.1948
Baltaci, F., Başer, M.Y., & Çelik, M. (2024). Attitude towards service robots in tourism and hospitality services settings — The effect of multidimensional anthropomorphism and technology readiness. International Journal of Tourism Research, 26, 1–15. https://doi.org/10.1002/jtr.2685
DOI: https://doi.org/10.1002/jtr.2685
Baumgartner, H., Weijters, B., & Pieters, R. (2021). The biasing effect of common method variance: some clarifications. Journal of the Academy of Marketing Science, 49(2), 221–235. https://doi.org/10.1007/s11747-020-00766-8
DOI: https://doi.org/10.1007/s11747-020-00766-8
Blut, M., & Wang, C. (2020). Technology readiness: A meta-analysis of conceptualizations of the construct and its impact on technology usage. Journal of the Academy of Marketing Science, 48(2), 649–669. https://doi.org/10.1007/s11747-019-00680-8
DOI: https://doi.org/10.1007/s11747-019-00680-8
Bozionelos, N., & Simmering, M.J. (2021). Methodological threat or myth? evaluating the current state of evidence on common method variance in human resource management research. Human Resource Journal Management, 32(4), 194–215. https://doi.org/10.1111/1748-8583.12398
DOI: https://doi.org/10.1111/1748-8583.12398
Brandon-Jones, A., & Kauppi, K. (2018). Examining the antecedents of the technology acceptance model within e-procurement. International Journal of Operations & Production Management, 38(1), 22–42. https://doi.org/10.1108/IJOPM-06-2015-0346
DOI: https://doi.org/10.1108/IJOPM-06-2015-0346
Buyle, R., Compernolle, M.V., Vlassenroot, E., Vanlishout, Z., & Mechant, P. (2018). Technology readiness and acceptance model as a predictor for the use intention of data standards in smart cities. Media and Communication, 6(4), 127–139. https://doi.org/10.17645/mac.v6i4.1679
DOI: https://doi.org/10.17645/mac.v6i4.1679
Chang, Y.-W., & Chen, J. (2021). What motivates customers to shop in smart shops? The impacts of smart technology and technology readiness. Journal of Retailing and Consumer Services, 58(C), 1–11. https://doi.org/10.1016/j.jretconser.2020.102325
DOI: https://doi.org/10.1016/j.jretconser.2020.102325
Chau, P.Y. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185–204. https://doi.org/10.1080/07421222.1996.11518128
DOI: https://doi.org/10.1080/07421222.1996.11518128
Chen, C.-C., Chang, C.-H., & Hsiao, K.-L. (2022). Exploring the factors of using mobile ticketing applications: Perspectives from innovation resistance theory. Journal of Retailing and Consumer Service, 67(C), 1–10. https://doi.org/10.1016/j.jretconser.2022.102974
DOI: https://doi.org/10.1016/j.jretconser.2022.102974
Chen, L., & Aklikokou, A.K. (2020). Determinants of e-government adoption: Testing the mediating effects of perceived usefulness and perceived ease of use. International Journal of Public Administration, 43(10), 850–865. https://doi.org/10.1080/01900692.2019.1660989
DOI: https://doi.org/10.1080/01900692.2019.1660989
Chen, M.-F., & Lin, N.-P. (2018). Incorporation of health consciousness into the technology readiness and acceptance model to predict app download and usage intentions. Internet Research, 28(2), 351–373. https://doi.org/10.1108/IntR-03-2017-0099
DOI: https://doi.org/10.1108/IntR-03-2017-0099
Chen, S.-C., & Li, S.-H. (2010). Consumer adoption of e-service: Integrating technology readiness with the theory of planned behavior. African Journal of Business Management, 4(16), 3556–3563.
Cheng, S., & Cho, V. (2011). An integrated model of employees’ behavioral intention toward innovative information and communication technologies in travel agencies. Journal of Hospitality and Tourism Research, 35(4), 488–510. https://doi.org/10.1177/1096348010384598
DOI: https://doi.org/10.1177/1096348010384598
Chiu, W., & Cho, H. (2021). The role of technology readiness in individuals’ intention to use health and fitness applications: A comparison between users and non-users. Asia Pacific Journal of Marketing and Logistics, 33(3), 807–825. https://doi.org/10.1108/APJML-09-2019-0534
DOI: https://doi.org/10.1108/APJML-09-2019-0534
Chung, N., Han, H., & Joun, Y. (2015). Tourists’ intention to visit a destination: The role of augmented reality (AR) application for a heritage site. Computers in Human Behavior, 50, 588–599. https://doi.org/10.1016/j.chb.2015.02.068
DOI: https://doi.org/10.1016/j.chb.2015.02.068
Ciftci, O., Berezina, K., & Kang, M. (2021). Effect of personal innovativeness on technology adoption in hospitality and tourism: Meta-analysis. In W. Wörndl, C. Koo, & J.L. Stienmetz (Eds.), Information and Communication Technologies in Tourism (pp. 162–174). Springer. https://doi.org/10.1007/978-3-030-65785-7_14
DOI: https://doi.org/10.1007/978-3-030-65785-7_14
Cimbaljević, M., Bajrami, D. D., Kovačić, S., Pavluković, V., Stankov, U., & Vujičić, M. (2024). Employees’ technology adoption in the context of smart tourism development: The role of technological acceptance and technological readiness. European Journal of Innovation Management, 27(8), 2457–2482. https://doi.org/10.1108/EJIM-09-2022-0516
DOI: https://doi.org/10.1108/EJIM-09-2022-0516
Clark, B.B., Robert, C., & Hampton, S.A. (2016). The technology effect: How perceptions of technology drive excessive optimism. Journal of Business Psychology, 31(1), 87–102. https://psycnet.apa.org/doi/10.1007/s10869-015-9399-4
DOI: https://doi.org/10.1007/s10869-015-9399-4
Clausing, D., & Holmes, M. (2010). Technology readiness. Research-Technology Management, 53(4), 52–59. https://doi.org/10.1080/08956308.2010.11657640
DOI: https://doi.org/10.1080/08956308.2010.11657640
Cooper, B., Eva, N., Fazlelahi, F.Z., Newman, A., Lee, A., & Obschonka, M. (2020). Addressing common method variance and endogeneity in vocational behavior research: A review of the literature and suggestions for future research. Journal of Vocational Behavior, 121, 1–14. https://doi.org/10.1016/j.jvb.2020.103472
DOI: https://doi.org/10.1016/j.jvb.2020.103472
Dalton, C.C., & Gottlieb, L.N. (2003). The concept of readiness to change. Journal of Advanced Nursing, 42(2), 108–117. https://doi.org/10.1046/j.1365-2648.2003.02593.x
DOI: https://doi.org/10.1046/j.1365-2648.2003.02593.x
Damerji, H., & Salimi, A. (2021). Mediating effect of use perceptions on technology readiness and adoption of artificial intelligence in accounting. Accounting Education, 30(2), 107–130. https://doi.org/10.1080/09639284.2021.1872035
DOI: https://doi.org/10.1080/09639284.2021.1872035
Danaher, J. (2022). Techno optimism: An analysis, an evaluation and a modest defence. Philosophy & Technology, 35(2), 54–83. https://doi.org/10.1007/s13347-022-00550-2
DOI: https://doi.org/10.1007/s13347-022-00550-2
Darsono, L.I. (2005). Examining information technology acceptance by individual professionals. Gadjah Mada International Journal of Business, 7(2), 155–178. https://doi.org/10.22146/gamaijb.5576
DOI: https://doi.org/10.22146/gamaijb.5576
Dávid, L.D., & El Archi, Y. (2024). Beyond boundaries: Navigating smart economy through the lens of tourism. Oeconomia Copernicana, 15(1),13–25. http://dx.doi.org/10.24136/oc.2978
DOI: https://doi.org/10.24136/oc.2978
Davis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Management Information Systems Research Center, 13(3), 319–340. https://doi.org/10.2307/249008
DOI: https://doi.org/10.2307/249008
Demir, S. (2022). Comparison of normality tests in terms of sample sizes under different skewness and kurtosis coefficients. International Journal of Assessment Tools in Education, 9(2), 397–409. https://doi.org/10.21449/ijate.1101295
DOI: https://doi.org/10.21449/ijate.1101295
Doll, W.J., Hendrickson, A., & Deng, X. (1998). Using Davis’s perceived usefulness and ease-of-use instruments for decision making: A confirmatory and multigroup invariance analysis. Decision Science, 29(4), 839–869. https://doi.org/10.1111/j.1540-5915.1998.tb00879.x
DOI: https://doi.org/10.1111/j.1540-5915.1998.tb00879.x
Ekşioğlu, Ş., & Ural, T. (2022). The effects of technology readiness on intention of using the mobile payment applications. In S. Grima, E. Özen, & H. Boz (Eds.), Contemporary studies in economic and financial Analysis (pp. 231–250). Emerald Publishing Limited.
DOI: https://doi.org/10.1108/S1569-37592022000109A014
Ferreira, J.B., Rocha, A., & Silva, J.F. (2014). Impacts of technology readiness on emotions and cognition in Brazil. Journal of Business Research, 67(5), 865–873. https://doi.org/10.1016/j.jbusres.2013.07.005
DOI: https://doi.org/10.1016/j.jbusres.2013.07.005
Firat, M., Kanbay, Y., Gokmen, B.D., Utkan, M., & Okanli, A. (2021). Investigating the factors affecting depression by using structural equation modeling. Galician Medical Journal, 28(1), 1–8. https://doi.org/10.21802/gmj.2021.1.1
DOI: https://doi.org/10.21802/gmj.2021.1.1
Flavian, C., Perez-Rueda, A., Belanche, D., & Casalo, L.V. (2022). Intention to use analytical artificial intelligence (AI) in services — The effect of technology readiness and awareness. Journal of Service Management, 33(2), 293–320. http://dx.doi.org/10.1108/JOSM-10-2020-0378
DOI: https://doi.org/10.1108/JOSM-10-2020-0378
Godoe, P., & Johansen, T.S. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European Psychology Students, 3(1), 38–52. http://dx.doi.org/10.5334/jeps.aq
DOI: https://doi.org/10.5334/jeps.aq
Gonzalez, R., Gasco, J., & Llopis, J. (2020). Information and communication technologies and human resources in hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(11), 3545–3579. http://dx.doi.org/10.1108/IJCHM-04-2020-0272
DOI: https://doi.org/10.1108/IJCHM-04-2020-0272
Gonzales-Santiago, M.S., Loureiro, S.M.C., Langaro, D., & Ali, F. (2024). Adoption of smart technologies in the cruise tourism services: A systematic review and future research agenda. Journal of Hospitality and Tourism Technology, 15(2), 285–308. http://dx.doi.org/10.1108/JHTT-06-2022-0159
DOI: https://doi.org/10.1108/JHTT-06-2022-0159
Grevet, E., Forge, K., Tadiello, S., Izac, M., Amadieu, F., Brunel, L., Pillette, L., Py, J., Gasq, D., & Jeunet-Kelway, C. (2023). Modeling the acceptability of BCIs for motor rehabilitation after stroke: A large scale study on the general public. Frontiers in Neuroergonomics, 3, 1–23. https://doi.org/10.3389/fnrgo.2022.1082901
DOI: https://doi.org/10.3389/fnrgo.2022.1082901
Gunavan, F., Ali, M. M., & Nugroho, A. (2019). Analysis of the effects of perceived ease of use and perceived usefulness on consumer attitude and their impacts on purchase decision on PT Tokopedia In Jabodetabek. European Journal of Business and Management Research, 4(5), 1–6. http://dx.doi.org/10.24018/ejbmr.2019.4.5.100
DOI: https://doi.org/10.24018/ejbmr.2019.4.5.100
Gupta, K., & Singh, N. (2014). Fit estimation in structural equation modeling — A synthesis of related statistics. HSB Research Review, 8(2), 2027.
Gupta, P., Prashar, S., Vijay, T.S., & Parsad, C. (2021). Examining the influence of antecedents of continuous intention to use an informational app: The role of perceived usefulness and perceived ease of use. International Journal of Business Information System, 36(2), 270–287.
DOI: https://doi.org/10.1504/IJBIS.2021.112829
Guvendir, A.M., & Ozkan, O.Y. (2022). Item removal strategies conducted in exploratory factor analysis: A comparative study. International Journal of Assessment Tools in Education, 9(1), 165–180. https://doi.org/10.21449/ijate.827950
DOI: https://doi.org/10.21449/ijate.827950
Güven, S., &Şahin, B. (2023). Analyzing technology readiness level of tourism academicians based on certain demographic variables. Journal of Global Tourism And Technology Research, 4(2), 56–75. https://doi.org/10.54493/jgttr.1351477
DOI: https://doi.org/10.54493/jgttr.1351477
Hadi, N.U., Abdullah, N., & Sentosa, I. (2016). An easy approach to exploratory factor analysis: Marketing perspective. Journal of Educational and Social Research, 6(1), 215–223. http://dx.doi.org/10.5901/jesr.2016.v6n1p215
DOI: https://doi.org/10.5901/jesr.2016.v6n1p215
Hair, J.F., Risher, J.J., Sarstedt, M., & Ringle, C.M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
DOI: https://doi.org/10.1108/EBR-11-2018-0203
Hamid, M.R.A., Sami, W., & Sidek, M.H.M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890, 1–5. https://iopscience.iop.org/article/10.1088/1742-6596/890/1/012163
DOI: https://doi.org/10.1088/1742-6596/890/1/012163
Hasni, M.J., Farah, M.F., & Adee, I. (2019). The technology acceptance model revisited: Empirical evidence from the tourism industry in Pakistan. Journal of Tourism Future, ahead-of-print, 1–21. https://doi.org/10.1108/JTF-09-2021-0220
DOI: https://doi.org/10.1108/JTF-09-2021-0220
Henderson, R., & Divett, M.J. (2003). Perceived usefulness, ease of use and electronic supermarket use. International Journal of Human Compter Studies, 59(3), 383–395. https://doi.org/10.1016/S1071-5819(03)00079-X
DOI: https://doi.org/10.1016/S1071-5819(03)00079-X
Holden, R.J., & Karsh, B. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159–172. https://doi.org/10.1016/j.jbi.2009.07.002
DOI: https://doi.org/10.1016/j.jbi.2009.07.002
Hong, X., Zhang, M., & Liu, Q. (2021). Preschool teachers’ technology acceptance during the COVID-19: An adapted technology acceptance model. Frontiers in Psychology, 12, 1–11. https://doi.org/10.3389/fpsyg.2021.691492
DOI: https://doi.org/10.3389/fpsyg.2021.691492
Howard, M.C. (2016). A Review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human–Computer Interaction, 32(1), 51–62. https://doi.org/10.1080/10447318.2015.1087664
DOI: https://doi.org/10.1080/10447318.2015.1087664
Huang, C.-C., Wang, Y.-M., Wu, T.-W., & Wang, P.-A. (2013). An empirical analysis of the antecedents and performance consequences of using the moodle platform. International Journal of Information and Education Technology, 3(2), 217–221. http://dx.doi.org/10.7763/IJIET.2013.V3.267
DOI: https://doi.org/10.7763/IJIET.2013.V3.267
Igartua, J.-J., & Hayes, A.F. (2021). Mediation, moderation, and conditional process analysis: Concepts, computations, and some common confusions. The Spanish Journal of Psychology, 24(49), 1–23. https://doi.org/10.1017/SJP.2021.46
DOI: https://doi.org/10.1017/SJP.2021.46
Ismail, I., Azizan, S.N., & Azman, N. (2011). Accessing innovativeness of distance learners toward their readiness in embracing technology. African Journal of Business Management, 5(33), 12768–12776. https://doi.org/10.5897/AJBM11.824
Jeffers, P.I. (2010). Embracing sustainability: Information technology and the strategic leveraging of operations in third-party logistics. International Journal of Operations & Production Management, 30(3), 260–287. http://dx.doi.org/10.1108/01443571011024629
DOI: https://doi.org/10.1108/01443571011024629
Jin, C.-H. (2020). Predicting the use of brand application based on a TRAM. International Journal of Human–Computer Interaction, 36(2), 156–171. http://dx.doi.org/10.1080/10447318.2019.1609227
DOI: https://doi.org/10.1080/10447318.2019.1609227
Jokisch, M.R., Schmidt, L.I., Doh, M., Marquard, M., & Wahl, H.-W. (2020). The role of internet self-efficacy, innovativeness and technology avoidance in breadth of internet use: Comparing older technology experts and non-experts. Computers in Human Behavior, 111(2), 1–9. http://dx.doi.org/10.1016/j.chb.2020.106408
DOI: https://doi.org/10.1016/j.chb.2020.106408
Kampa, R.K. (2023). Combining technology readiness and acceptance model for investigating the acceptance of m-learning in higher education in India. Asian Association of Open Universities Journal, 18(2), 105–120. http://dx.doi.org/10.1108/AAOUJ-10-2022-0149
DOI: https://doi.org/10.1108/AAOUJ-10-2022-0149
Keni, K. (2020). How perceived usefulness and perceived ease of use affecting intent to repurchase? Jurnal Manajemen, 24(3), 481–496. http://dx.doi.org/10.24912/jm.v24i3.680
DOI: https://doi.org/10.24912/jm.v24i3.680
Khan, S., & Khan, S. U. (2025). Tourist motivation to adopt smart hospitality: the impact of smartness and technology readiness. Journal of Hospitality and Tourism Insights, 8(4), 1268–1287. http://dx.doi.org/10.1108/JHTI-04-2024-0335
DOI: https://doi.org/10.1108/JHTI-04-2024-0335
Khashan, M.A., Alasker, T.H., Ghonim, M.A., & Elsotouhy, M.M. (2025). Understanding physicians’ adoption intentions to use electronic health record (EHR) systems in developing countries: An extended TRAM approach. Marketing Intelligence & Planning, 43(1), 1–27. http://dx.doi.org/10.1108/MIP-05-2023-0225
DOI: https://doi.org/10.1108/MIP-05-2023-0225
Kim, T., & Chiu, W. (2019). Consumer acceptance of sports wearable technology: The role of technology readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109–126. http://dx.doi.org/10.1108/IJSMS-06-2017-0050
DOI: https://doi.org/10.1108/IJSMS-06-2017-0050
Kissi, E., Agyekum, K., Baiden, B.K., Agyei, T.R., Eshun, B.T., & Badu, E. (2022). Factors influencing tender pricing strategies of construction SMEs in Ghana. International Journal of Construction Management, 22(3), 387–399. https://doi.org/10.1080/15623599.2019.1625995
DOI: https://doi.org/10.1080/15623599.2019.1625995
Kline, T.J., Sulsky, L.M., & Rever-Moriyama, S.D. (2000). Common method variance and specification errors: A practical approach to detection. The Journal of Psychology, 134(4), 401–421. http://dx.doi.org/10.1080/00223980009598225
DOI: https://doi.org/10.1080/00223980009598225
Krier, J.E., & Gillette, C. P. (1985). The un-easy case for technological optimism. Michigan Law Review, 84, 405–429.
DOI: https://doi.org/10.2307/1289008
Kucukusta, D., Law, R., Besbes, A., & Legoherel, P. (2015). Re-examining perceived usefulness and ease of use in online booking: The case of Hong Kong online users. International Journal of Contemporary Hospitality Management, 27(2), 186–198. https://doi.org/10.1108/IJCHM-09-2013-0413
DOI: https://doi.org/10.1108/IJCHM-09-2013-0413
Larasati, N., Widyawan, & Santosa, P.I. (2017). Technology readiness and technology acceptance model in new technology implementation process in low technology SMEs. International Journal of Innovation, Management and Technology, 8(2), 113–117. http://dx.doi.org/10.18178/ijimt.2017.8.2.713
DOI: https://doi.org/10.18178/ijimt.2017.8.2.713
Letchumanan, M., & Muniandy, B. (2013). Migrating to e-book: A study on perceived usefulness and ease of use. Library Hi Tech News, 30(7), 10–15. http://dx.doi.org/10.1108/LHTN-05-2013-0028
DOI: https://doi.org/10.1108/LHTN-05-2013-0028
Lin, C.-H., Shih, H.-Y., & Sher, P.J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Marketing, 24(7), 641–657. http://dx.doi.org/10.1002/mar.20177
DOI: https://doi.org/10.1002/mar.20177
Lin, J.-S. C., & Chang, H.-C. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality, 21(4), 424–444. http://dx.doi.org/10.1108/09604521111146289
DOI: https://doi.org/10.1108/09604521111146289
Lin X.P., Li B.B., Zhang M., & Yang Z. (2023) Exploring the intersections of TAM and TRI models in middle school VR technology acceptance. Frontiers in Education, 8, 1–8. https://doi.org/10.3389/feduc.2023.1308509
DOI: https://doi.org/10.3389/feduc.2023.1308509
Lio, W., & Liu, B. (2020). Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Computing, 24(13), 9351–9360. https://doi.org/10.1007/s00500-020-04951-3
DOI: https://doi.org/10.1007/s00500-020-04951-3
Loan, N.T., Lan, L.T., Tra, D.T., & Hoang, N.V. (2022). The intention to use mobile applications in tourism among gen Z in Vietnam: The effect of technological readiness and technology acceptance factors. Journal of Organizational Behavior Research, 7(2), 290–309. https://doi.org/10.51847/AcDw70I581
DOI: https://doi.org/10.51847/AcDw70I581
Lu, J., Yu, C.-S., Liu, C., & Yao, J.E. (2003). Technology acceptance model for wireless internet. Electronic Networking Applications and Policy, 13(3), 206–222. http://dx.doi.org/10.1108/10662240310478222
Marangunić, N., & Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81–95. https://doi.org/10.1007/s10209-014-0348-1
DOI: https://doi.org/10.1007/s10209-014-0348-1
Mahgfiroh, R.K, Indriastuti, H., & Martiyant, D. (2025). The influence of technology readiness and perceived ease of use on the decision to use QRIS as a digital payment through perceived utility. American Journal of Humanities and Social Sciences Research, 13(3), 93–101. http://dx.doi.org/10.1108/10662240310478222
DOI: https://doi.org/10.1108/10662240310478222
Marler, J.H., Fisher, S. L., & Ke, W. (2009). Employee self-service technology acceptance: A comparison of pre-implementation and post-implementation relationship. Personnel Psychology, 62(2), 327–358. https://doi.org/10.1111/j.1744-6570.2009.01140.x
DOI: https://doi.org/10.1111/j.1744-6570.2009.01140.x
Marsh, H.W., & Balla, J. (1994). Goodness of fit in confirmatory factor analysis: The effects of sample size and model parsimony. Quality & Quantity, 28(2), 185–217. https://doi.org/10.1007/BF01102761
DOI: https://doi.org/10.1007/BF01102761
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshr, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.aca_157_18
DOI: https://doi.org/10.4103/aca.ACA_157_18
Molina-López, J., Zarzuela, I.B., Sáez-Padilla, J., Tornero-Quiñones, I., & Planells, E. (2020). Mediation effect of age category on the relationship between body composition and the physical fitness profile in youth handball players. International Journal of Environmental Research and Public Health, 17(7), 1–16. https://doi.org/10.3390/ijerph17072350
DOI: https://doi.org/10.3390/ijerph17072350
Na, T.-K., Lee, S.-H., & Yang, J.-Y. (2021). Moderating effect of gender on the relationship between technology readiness index and consumers’ continuous use intention of self-service restaurant kiosks. Information, 12(7), 1–13. https://doi.org/10.3390/info12070280
DOI: https://doi.org/10.3390/info12070280
Napierała, T., Bahar, M., Leśniewska-Napierała, K., & Topsakal, Y. (2020). Technology towards hotel competitiveness: Case of Antalya, Turkey. European Journal of Tourism, Hospitality and Recreation, 10(3), 262–273. http://dx.doi.org/10.2478/ejthr-2020-0023
DOI: https://doi.org/10.2478/ejthr-2020-0023
Natasia, S.R., Wiranti, Y.T., & Parastika, A. (2022). Acceptance analysis of NUADU as e-learning platform using the technology acceptance model (TAM) approach. Sixth Information Systems International Conference (ISICO 2021), 512–520. Jawa Timur: Procedia. http://dx.doi.org/10.1016/j.procs.2021.12.168
DOI: https://doi.org/10.1016/j.procs.2021.12.168
Negm, E. (2023). Intention to use internet of things (IoT) in higher education online learning — The effect of technology readiness. Higher Education, Skills and Work-Based Learning, 13(1), 53–65. http://dx.doi.org/10.1108/HESWBL-05-2022-0121
DOI: https://doi.org/10.1108/HESWBL-05-2022-0121
O’Hern, S., & Louis, R.S. (2023). Technology readiness and intentions to use conditionally automated vehicles. Transportation Research Part F: Psychology and Behaviour, 94(4), 1–8. http://dx.doi.org/10.1016/j.trf.2023.02.001
DOI: https://doi.org/10.1016/j.trf.2023.02.001
Oikonomou, M., Kopanaki, E., & Georgopoulos, N. (2022). Readiness analysis for IT adoption in the hotel industry. Journal of Tourism and Leisure Studies, 7(1), 23–42. http://dx.doi.org/10.18848/2470-9336/CGP/v07i01/23-42
DOI: https://doi.org/10.18848/2470-9336/CGP/v07i01/23-42
Orcan, F. (2020). Parametric or non-parametric: Skewness to test normality for mean comparison. International Journal of Assessment Tools in Education, 7(2), 255–265. https://doi.org/10.21449/ijate.656077
DOI: https://doi.org/10.21449/ijate.656077
Parasuraman, A., & Colby, C.L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/1094670514539730
DOI: https://doi.org/10.1177/1094670514539730
Park, H.J., & Zhang, Y. (2022). Technology readiness and technology paradox of unmanned convenience store users. Journal of Retailing and Consumer Services, 65(C), 1–9. http://dx.doi.org/10.1016/j.jretconser.2021.102523
DOI: https://doi.org/10.1016/j.jretconser.2021.102523
Peng, M.Y.-P., & Yan, X. (2022). Exploring the influence of determinants on behavior intention to use of multiple media kiosks through technology readiness and acceptance model. Frontiers in Psychology, 13, 1–11. https://doi.org/10.3389/fpsyg.2022.852394
DOI: https://doi.org/10.3389/fpsyg.2022.852394
Pizam, A., Ozturk, A. B., Balderas-Cejudo, A., Buhalis, D., Fuchs, G., Hara, T., Meira, J., Revilla, M.R.G., Sethi, D., Shen, Y., State, O., Hacikara, A., & Chaulagain, S. (2022). Factors affecting hotel managers’ intentions to adopt robotic technologies: A global study. International Journal of Hospitality Management, 102, 1–15. https://psycnet.apa.org/doi/10.1016/j.ijhm.2022.103139
DOI: https://doi.org/10.1016/j.ijhm.2022.103139
Rahman, S.A., Taghizadeh, S.K., Ramayah, T., & Alam, M.M. (2017). Technology acceptance among micro-entrepreneurs in marginalized social strata: The case of social innovation in Bangladesh. Technological Forecasting & Social Change, 118(C), 236–245. http://dx.doi.org/10.1016/j.techfore.2017.01.027
DOI: https://doi.org/10.1016/j.techfore.2017.01.027
Ramayah, T., & Lo, M.-C. (2007). Impact of shared beliefs on “perceived usefulness” and “ease of use” in the implementation of an enterprise resource planning system. Management Research News, 30(6), 420–431. http://dx.doi.org/10.1108/01409170710751917
DOI: https://doi.org/10.1108/01409170710751917
Raza, S.A., Umer, A., & Shah, N. (2017). New determinants of ease of use and perceived usefulness for mobile banking adoption. International Journal of Customer Relationship Management, 11(1), 44–65. http://dx.doi.org/10.1504/IJECRM.2017.10007744
DOI: https://doi.org/10.1504/IJECRM.2017.10007744
Rossoni, L., Engelbert, R., & Bellegard, N.L. (2016). Normal science and its tools: Reviewing the effects of exploratory factor analysis in management. Revista de Administração, 51(2), 198–211. https://doi.org/10.5700/rausp1234
DOI: https://doi.org/10.5700/rausp1234
Saade, R.G., & Kira, D. (2007). Mediating the impact of technology usage on perceived ease of use by anxiety. Computers & Education, 49(4), 1189–1204. http://dx.doi.org/10.1016/j.compedu.2006.01.009
DOI: https://doi.org/10.1016/j.compedu.2006.01.009
Saade, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Information & Management, 42(2), 317–327. http://dx.doi.org/10.1016/j.im.2003.12.013
DOI: https://doi.org/10.1016/j.im.2003.12.013
Schierz, P.G., Schilke, O., & Wirtz, B.W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209–216. https://doi.org/10.1016/j.elerap.2009.07.005
DOI: https://doi.org/10.1016/j.elerap.2009.07.005
Seong, B.-H., & Hong, C.-Y. (2022). Corroborating the effect of positive technology readiness on the intention to use the virtual reality sports game “screen golf ”: Focusing on the technology readiness and acceptance model. Information Processing and Management, 59(4), 1–11. https://doi.org/10.24985/ijass.2024.36.1.56
DOI: https://doi.org/10.1016/j.ipm.2022.102994
Shin, S. & Lee, W.-J. (2014). The effects of technology readiness and technology acceptance on NFC mobile payment services in Korea. The Journal of Applied Business Research, 30(6), 1615–1626. http://dx.doi.org/10.19030/jabr.v30i6.8873
DOI: https://doi.org/10.19030/jabr.v30i6.8873
Sigudla, J., & Maritz, J.E. (2023). Exploratory factor analysis of constructs used for investigating research uptake for public healthcare practice and policy in a resource-limited setting, South Africa. BMC Health Services Research, 23, 1–8. https://doi.org/10.1186/s12913-023-10165-8
DOI: https://doi.org/10.1186/s12913-023-10165-8
Suki, N.M., & Suki, N.M. (2011). Exploring the relationship between perceived usefulness, perceived ease of use, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3D mobile services. Journal of Information Technology Management, 22(1), 1–7.
Sun, S., Lee, P., & Law, R. (2019). Impact of cultural values on technology acceptance and technology readiness. International Journal of Hospitality Management, 77, 89–96. http://dx.doi.org/10.1016/j.ijhm.2018.06.017
DOI: https://doi.org/10.1016/j.ijhm.2018.06.017
Tavakol, M., & Wetzel, A. (2020). Factor analysis: a means for theory and instrument development in support of construct validity. International Journal of Medical Education, 11, 245–247. https://doi.org/10.5116/ijme.5f96.0f4a
DOI: https://doi.org/10.5116/ijme.5f96.0f4a
Teo, T. (2011). Considering common method variance in educational technology research. British Journal of Educational Technology, 42(5), 94–96. https://doi.org/10.1007/978-94-6091-487-4_1
DOI: https://doi.org/10.1111/j.1467-8535.2011.01202.x
Teo, T. (2012). Examining the intention to use technology among pre-service teachers: An integration of the technology acceptance model and theory of planned behavior. Interactive Learning Environments, 20(1), 3–18. https://doi.org/10.1080/10494821003714632
DOI: https://doi.org/10.1080/10494821003714632
Thakur, R., Angriawan, A., & Summey, J.H. (2016). Technological opinion leadership: the role of personal innovativeness, gadget love, and technological innovativeness. Journal of Business Research, 69(8), 2764–2773. https://doi.org/10.1016/j.jbusres.2015.11.012
DOI: https://doi.org/10.1016/j.jbusres.2015.11.012
Truant, E., Giordino, D., Borlatto, E., & Bhatia, M. (2024). Drivers and barriers of smart technologies for circular economy: Leveraging smart circular economy implementation to nurture companies’ performance. Technological Forecasting and Social Change, 198, 122954. https://doi.org/10.1016/j.techfore.2023.122954
DOI: https://doi.org/10.1016/j.techfore.2023.122954
Vorm, E. S., & Combs, D. J. (2022). Integrating transparency, trust, and acceptance: the intelligent systems technology acceptance model. International Journal of Human–Computer Interaction, 38(18–20), 1828–1845. http://dx.doi.org/10.1080/10447318.2022.2070107
DOI: https://doi.org/10.1080/10447318.2022.2070107
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & Management, 44(2), 206–215. http://dx.doi.org/10.1016/j.im.2006.12.005
DOI: https://doi.org/10.1016/j.im.2006.12.005
Wang, K., Xu, Y., Wang, C., Tan, M., & Chen, P. (2020). A corrected goodness-of-fit index (CGFI) for model evaluation in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 27(5), 735–749. http://dx.doi.org/10.1080/10705511.2019.1695213
DOI: https://doi.org/10.1080/10705511.2019.1695213
Wang, Y., So, K.K., & Sparks, B.A. (2017). Technology readiness and customer satisfaction with travel technologies: a cross-country investigation. Journal of Travel Research, 56(5), 563–577. https://doi.org/10.1177/0047287516657891
DOI: https://doi.org/10.1177/0047287516657891
Wiastuti, R.D., Omar, R.M., Ignacia, S.N., Sarim, S., & Nurbaeti, N. (2024). The continuance intention of coffee shop mobile food ordering applications. Academica Turistica, 17(3), 231–245. http://dx.doi.org/10.26493/2335-4194.17.231-245
DOI: https://doi.org/10.26493/2335-4194.17.231-245
Widiar, G., Yuniarinto, A., &Yulianti, I. (2023). Perceived ease of use’s effect on behavioral intention mediated by perceived usefulness and trust. Interdisciplinary Social Studies, 2(4), 1829–1844. http://dx.doi.org/10.55324/iss.v2i4.397
DOI: https://doi.org/10.55324/iss.v2i4.397
Yi, M.Y., Fiedler, K.D., & Park, J.S. (2006). Understanding the role of individual innovativeness in the acceptance of IT-based innovations: Comparative analyses of models and measures. Decision Sciences, 37(3), 393–426. http://dx.doi.org/10.1111/j.1540-5414.2006.00132.x
DOI: https://doi.org/10.1111/j.1540-5414.2006.00132.x
Zhao, J., Li, X., & Gao, Z. (2025). From innovativeness to insecurity: Unveiling the facets of translation technology use behavior among EFL learners using TRI 2.0. Humanities & Social Science Communications, 12, 1–15. https://doi.org/10.1057/s41599-025-04777-0
DOI: https://doi.org/10.1057/s41599-025-04777-0