Anderson N.P., Hart J.M., Sullivan D.M., Christensen N.W., Horneck D.A., Pirelli G.J., 2013, Applying Lime to Raise Soil pH for Crop Production (Western Oregon), EM 9057, 1-21, https://catalog.extension.oregonstate.edu/em9057 [access: 20.09.2018].
Barros A.J.M., Prasad S., Leite V.D., Souza A.G., 2006, The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge, Brazilian Journal of Chemical Engineering, 23(2), 153-162, http://dx.doi.org/10.1590/S0104- 66322006000200001 [access: 11.08.2018].
Carmona D.M., Ángel Faz R.Z., Martínez-Martínez S., Jose A., 2011, Acosta reclamation of contaminated mine ponds using marble wastes, organic amendments, and phytoremediation, Detoxification of Heavy Metals, Part of the Soil Biology book series (SOILBIOL, 30), Berlin: Springer Berlin Heidelberg.
Chang Pan, Jun Chen, Ke Wu, Zhongkai Zhou, Tingting Cheng, 2018, Heavy Metal Contaminated Soil Imitation Biological Treatment Overview. IOP Conference Series: Materials Science and Engineering, 301, 012113, doi:10.1088/1757-899X/301/ 1/012113.
Chernysh Y., 2017, The directions of natural regulation of the soil complex protective properties. Materials of ІV International scientific and practical conference "Ecology and environmental in the optimizing system of relation between nature and society", Ternopil, 27-28 April 2017.
Chernysh Y., Plyatsuk L., 2017, Modeling the process of stimulating the protective functions of the soil complex using a biogenic composite based on technogenic waste, Environmental Sciences, 13, 129-140.
Chernysh Y., Balintova M., Plyatsuk L., Holub M., Demcak S., 2018, The Influence of Phosphogypsum Addition on Phosphorus Release in Biochemical Treatment of Sewage Sludge, International Journal of Environmental Research and Public Health, 15, 1269.
Chernysh Y., 2018, The Environmental Friendly Solution for Stimulation of the Soil Protective Properties. Poster. Current challenges of local and regional development, Poznan, 11- 13 September 2018, www2.balticuniv.uu.se/bup-3/index.php/public/bup-events/ current-events/current-challenges-of-local-and-regional-development/1439- yelizaveta-chernysh-the-environmnetal-friendly-solutions/file?download=1 [access: 1.10.2018].
Dadenko E.V., Miasnikova M.A., Kazeev K.Sh., Kolesnikov S.I., 2013, Application of enzyme activity indicators while assessing the state of agricultural soils, Proceedings of Samara scientific center, 3(5), 1274-1277.
Derome J., 2000, Detoxification and amelioration of heavy-metal contaminated forest soils by means of liming and fertilization, Environmental Pollution, 107(1), 79-88.
Fulekar M.H., Sharma J., Tendulkar A., 2012, Bioremediation of heavy metals using biostimulation in laboratory bioreactor, Environmental Monitoring and Assessment, 184 (12), 7299-307, doi: 10.1007/s10661-011-2499-3.
Goulding K.W.T., 2016, Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom, Soil Use and Management, 32(3), 390-399.
Hentati O., Abrantes N., Caetano A.L., Bouguerra S., Gonçalves F., Römbke J., Pereira R., 2015, Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants, Journal Hazard Mater, 294, 80-89.
Konhauser K., Riding R., 2012, Bacterial Biomineralization, in: Fundamentals of Geobiology, eds. A.H. Knoll, D.E. Canfield, K.O. Konhauser, Hoboken, NJ: Blackwell Publishing.
Napan K., 2014, Distribution of Heavy Metals from Flue Gas in Algal Bioreactor, https:// digitalcommons.usu.edu/etd/4018 [access: 15.08.2018].
Yanyan Gong, Dongy Zhaob, Qilin Wang, 2018, An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade, Water Research, 147, 440-460.
Zachara J.M., Kukkadapu R.K., Fredrickson J.K., 2002, Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB), Geomicrobiology Journal, 19, 179-207.
Usuń Anderson N.P., Hart J.M., Sullivan D.M., Christensen N.W., Horneck D.A., Pirelli G.J., 2013, Applying Lime to Raise Soil pH for Crop Production (Western Oregon), EM 9057, 1-21, https://catalog.extension.oregonstate.edu/em9057 [access: 20.09.2018].
Barros A.J.M., Prasad S., Leite V.D., Souza A.G., 2006, The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge, Brazilian Journal of Chemical Engineering, 23(2), 153-162, http://dx.doi.org/10.1590/S0104- 66322006000200001 [access: 11.08.2018].
Carmona D.M., Ángel Faz R.Z., Martínez-Martínez S., Jose A., 2011, Acosta reclamation of contaminated mine ponds using marble wastes, organic amendments, and phytoremediation, Detoxification of Heavy Metals, Part of the Soil Biology book series (SOILBIOL, 30), Berlin: Springer Berlin Heidelberg.
Chang Pan, Jun Chen, Ke Wu, Zhongkai Zhou, Tingting Cheng, 2018, Heavy Metal Contaminated Soil Imitation Biological Treatment Overview. IOP Conference Series: Materials Science and Engineering, 301, 012113, doi:10.1088/1757-899X/301/ 1/012113.
Chernysh Y., 2017, The directions of natural regulation of the soil complex protective properties. Materials of ІV International scientific and practical conference "Ecology and environmental in the optimizing system of relation between nature and society", Ternopil, 27-28 April 2017.
Chernysh Y., Plyatsuk L., 2017, Modeling the process of stimulating the protective functions of the soil complex using a biogenic composite based on technogenic waste, Environmental Sciences, 13, 129-140.
Chernysh Y., Balintova M., Plyatsuk L., Holub M., Demcak S., 2018, The Influence of Phosphogypsum Addition on Phosphorus Release in Biochemical Treatment of Sewage Sludge, International Journal of Environmental Research and Public Health, 15, 1269.
Chernysh Y., 2018, The Environmental Friendly Solution for Stimulation of the Soil Protective Properties. Poster. Current challenges of local and regional development, Poznan, 11- 13 September 2018, www2.balticuniv.uu.se/bup-3/index.php/public/bup-events/ current-events/current-challenges-of-local-and-regional-development/1439- yelizaveta-chernysh-the-environmnetal-friendly-solutions/file?download=1 [access: 1.10.2018].
Dadenko E.V., Miasnikova M.A., Kazeev K.Sh., Kolesnikov S.I., 2013, Application of enzyme activity indicators while assessing the state of agricultural soils, Proceedings of Samara scientific center, 3(5), 1274-1277.
Derome J., 2000, Detoxification and amelioration of heavy-metal contaminated forest soils by means of liming and fertilization, Environmental Pollution, 107(1), 79-88.
Fulekar M.H., Sharma J., Tendulkar A., 2012, Bioremediation of heavy metals using biostimulation in laboratory bioreactor, Environmental Monitoring and Assessment, 184 (12), 7299-307, doi: 10.1007/s10661-011-2499-3.
Goulding K.W.T., 2016, Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom, Soil Use and Management, 32(3), 390-399.
Hentati O., Abrantes N., Caetano A.L., Bouguerra S., Gonçalves F., Römbke J., Pereira R., 2015, Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants, Journal Hazard Mater, 294, 80-89.
Konhauser K., Riding R., 2012, Bacterial Biomineralization, in: Fundamentals of Geobiology, eds. A.H. Knoll, D.E. Canfield, K.O. Konhauser, Hoboken, NJ: Blackwell Publishing.
Napan K., 2014, Distribution of Heavy Metals from Flue Gas in Algal Bioreactor, https:// digitalcommons.usu.edu/etd/4018 [access: 15.08.2018].
Yanyan Gong, Dongy Zhaob, Qilin Wang, 2018, An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade, Water Research, 147, 440-460.
Zachara J.M., Kukkadapu R.K., Fredrickson J.K., 2002, Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB), Geomicrobiology Journal, 19, 179-207.